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Warning

We are getting experience with Bid Data, but reported issues may come
from miss-configuration as much as internal limitations of the tools

2 part talks:

1. Map/Reduce and Flink overview
2. Early Experience using Apache for scientific data
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Big Data: Google Map/Reduce

Google Map/Reduce (2004):
- Two data parallel operators: map, reduce
- Values are indexed with a key (key/value model)
- Parallel execution on a cluster (distributed memory)
- Runtime takes care of tasks scheduling, load balancing and fault tolerance

Map Shuffle Reduce



Map/Reduce Programming Model

Reduce: (K, list (vg)) -> (K, V')
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Example: Word Count

Input files
Foo.txt: “Sweet, this is the foo file”
Bar.txt: “This is the bar file”

l Output

mapper (filename, file-contents): sweet 1
for each word in file-contents: this 2
emit (word, 1) is 2
> the 2
foo 1
- bar 1

reducer (word, values):
sum=0
for each value in values:
sum = sum + value
emit (word, sum)
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Dynamic Task Scheduling
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- Load-balancing DR @

- Straggler nodes
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. output
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Input Map Intermediate files Reduce Output
files phase (on local disks) phase files
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Original MapReduce

Main open implementation: Hadoop Map/reduce
Limitations:

« Though the map and reduce operation are universal, it is difficult to
fit some algorithms (performance-wise and programming-wise)

« Results (included intermediate ones) are written to disk
(performance issue)

« Target cloud rather than HPC platforms

In front of these limitations new frameworks emerged: Piccolo,
Spark, Flink, ...



The Flink Case

A recent framework, called Stratosphere before to join the Apache
Foundation
Performance improvements:

* Intermediate results are stored in-memory (unless explicitly

stated)
* Intermediate results are mutable (in opposition to Spark RDDs)
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The Flink Case:
Programmability + Performance

More parallel operators
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Fig. 5 The five second-order functions (PACTSs) currently implemented in Stratosphere. The parallelization units implied by the PACTs are enclosed
in dotted boxes. a Map b Reduce ¢ Cross d Match e CoGroup
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The Flink Case:
Programmability + Performance

Programmable data flow graph
(support iterative algorithms)

Fig. 6 An algorithm that finds
the connected components of a
graph as a bulk iteration and an
incremental Stratosphere
iteration. a Bulk iteration b
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The Flink Case:

groupby
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The Flink Case:
Compile+Run Time Optimizations

PACT program

. Meteor parser

Operator implementations
Extensible packages of operators for
warehousing, information extraction and
integration

Nephele Job Graph

e
. Optimizer

| Logical and physical cost-based optimization:
L .

+ operator order, local execution, data exchange

Runtime operators

External hashing and sorting-based operator
implementations, implementation of data
exchange strategies

Execution engine
Task scheduling, job/task monitoring, network
management, fault tolerance, 1/O services,
memory management

_______________________________________
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The Flink Case: Speciallization

Layers
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File System and Databases

A key component of Big Data frameworks

Base concept: relational databases do not scale, go for key/value
oriented storage

The Hadoop classics: HDFS (file system), H-base (column-
oriented database)

- Write once, read many times

- Manage data replication for fault tolerance
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HPC and Big Data

Running Big Data frameworks on HPC architectures

1. Adapt existing frameworks:
RDMA-based Spark http://hibd.cse.ohio-state.edu/
Support for Luster (instead of HDFS)

2. Develop new frameworks (MPI based):

Picollo
MapReduce- MPI

Using Big Data frameworks to analyse HPC data (simulation
results, traces,...)



VelaSSco (FP7)

Query based Scientific Visualization:

e FEM/DEM simulation data

 Hadoop software suite (MapReduce, HDFS,
Hbase, Yarn, Thrift)

 Key/value: (timestep+rank-id, data)

* Scientist request some visualization
(isosurface for a given timestep):

Vis client <-> front server <-> map/reduce job <-> HBASE
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Velassco Infrastructure
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HBase

Column-oriented database

/ | cow{'nﬁmuffxes | \
‘Wﬁid | name city designation | salary
1 raju hyderabad manager 50,000
2 ravi chennai sr.engineer | 30,000
3 rajesh delhi jr.engineer 25,000
\ | 4
Internally rely on key/value storage: one key per
column

Rows are sorted according to key

Data are splits in blocks (10GB first changed to
256MB) , triplicated and distributed on the cluster
. dis
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HBase

Data are splits in blocks (10GB first changed to 256MB),
triplicated and distributed on the cluster disks.

At most one mapper per:
too few splits will impair parallelization

Hbase support virtual splits (virtually “split” a split in X parts to
enable X mappers to work concurrently) — We tried and
experienced issues for X>=8

A mapper can access a split locally or remotely (slower)
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HBase issues

1. |Initial perf. limitation: not enough splits -> not enough
parallelism

2. Data sharding: be carefull to hot spot

Slow changing bit Fast changing bit
First key: (model-id,analysis-id,timestep,rank-id)
New key: (model-id,rank-id,analysis-id,timestep)

Rank-id: MPI partition adopted by the numerical simulation
that produced the data set.

Queries are often working on a single timestep. First key tends
to have all data from a timestep in the same split -> low
parallelism. New key lead to a better spread of different ranks
data. But....

7
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HBase Issues

But it depends on the query and data:

DEM (large number of particles): many splits (1000s) so even
first key lead to good results

FEM (mesh): smaller number of splits (100s)

Discret-to-Continuous query requires to have a window of
time steps, but is only applied to a given number of partitions:
first Key works better because....
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HBase Issues

Timestep-rank (fist Key) Rankid-timestep (new Key)

11 o 11

12 12

13 13 |

271 21 (I_\?;reﬂr(y[fimestep [1]

22 > 22

23 23 Query timestep [2,3]
Rank [2]

31 31

32 32

33 > 33

Contiguous data: more likely to be in same split
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Data Injection into HBase

Data inflation: 5x (3x for triplication remaining for metadata
from column split ?)

Time to inject: 0.5TB -> 2 days

From the simulation to Hbase: use Flume to grab files

produced by the simulation (one file per timestep and rank)
and inject them into Hbase.

Cluster: A 10 nodes dedicated cluster — 110 TO storage — 10 GB
Ethernet network

Permanent Apache installation. Multi-user. Yarn in charge of

——job-scheduling.
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Map/reduce versus Spark versus Flink

From map/reduce to Flink

 Query translation: almost direct (Flink -> tuples,
Map/reduce key/values)

e HBASE connector in Flink is immature

 Performance: GetBoundaryofaMesh (mesh
surface)

- Map/reduce 22s, Flink 12s

- Early tests with Spark: 15s ? (no trouble with
the HBASE connector)



Summary

* Apache map/reduce: mature but store intermediate results to disks
e Spark /& Flink: in memory storage of intermediate results.
* Flink: promising (known in particular for its streaming capabilities) but for

the moment code less mature than Spark.

 HDFS/Hbase: not very satisfied

* Try with Cassendra?? (“everyone knows that HDFS/Hase is portable but
slow” ?)

Are Big Data tools suited for scientific data?
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HPC versus Big Data

HPC Big Data
- Numerical simulations - Web and business data
- Thin software stack - Thick software stack
- Supercomputer - Cloud
- C/C++/Fortran/Python - Java/Scala
- Looking for the universal - Many domain specific
programming model languages (DSL)
- Small Market - Large Market



US National Strategic Computing
Initiative (2015)

Sec. 2. Objectives. Executive departments, agencies, and offices
(agencies) participating in the NSCI shall pursue five strategic objectives:

. Accelerating delivery of a capable exascale computing system that
integrates hardware and software capability to deliver approximately
100 times the performance of current 10 petaflop systems across a
range of applications representing government needs.

2. Increasing coherence between the technology base used for

modeling and simulation and that used for data analytic
computing.
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