

Early experience using Apache for a query base scientific visualization Infrastructure.

Bruno Raffin DataMove

bruno.raffin@inria.fr

September 2016

Warning

We are getting experience with Bid Data, but reported issues may come from miss-configuration as much as internal limitations of the tools

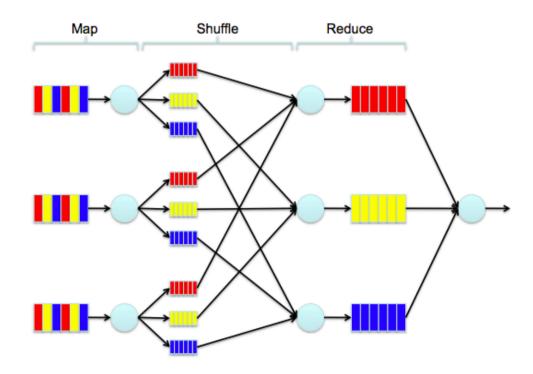
2 part talks:

- 1. Map/Reduce and Flink overview
- 2. Early Experience using Apache for scientific data

Big Data: Google Map/Reduce

Google Map/Reduce (2004):

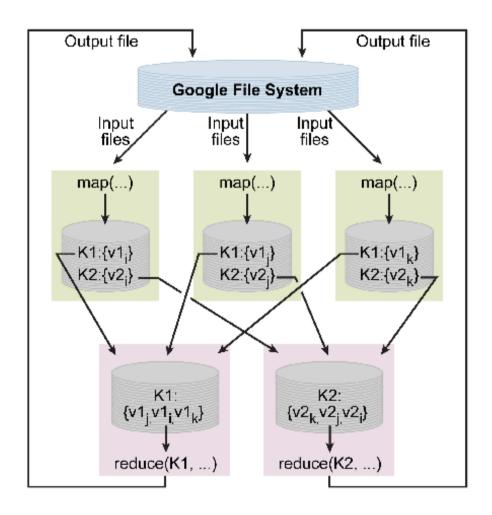
- Two data parallel operators: map, reduce
- Values are indexed with a key (key/value model)
- Parallel execution on a cluster (distributed memory)
- Runtime takes care of tasks scheduling, load balancing and fault tolerance



Map/Reduce Programming Model

Map: $(K_i, v_i) \rightarrow List(K_j, v_j)$

Reduce: $(K_q, list (v_q)) \rightarrow (K_q, v'_q)$



Example: Word Count

Input files

Foo.txt: "Sweet, this is the foo file"

Bar.txt: "This is the bar file"

mapper (filename, file-contents): for each word in file-contents: emit (word, 1)

reducer (word, values):

sum = 0
for each value in values:
 sum = sum + value
emit (word, sum)

Output sweet 1

this 2

is 2

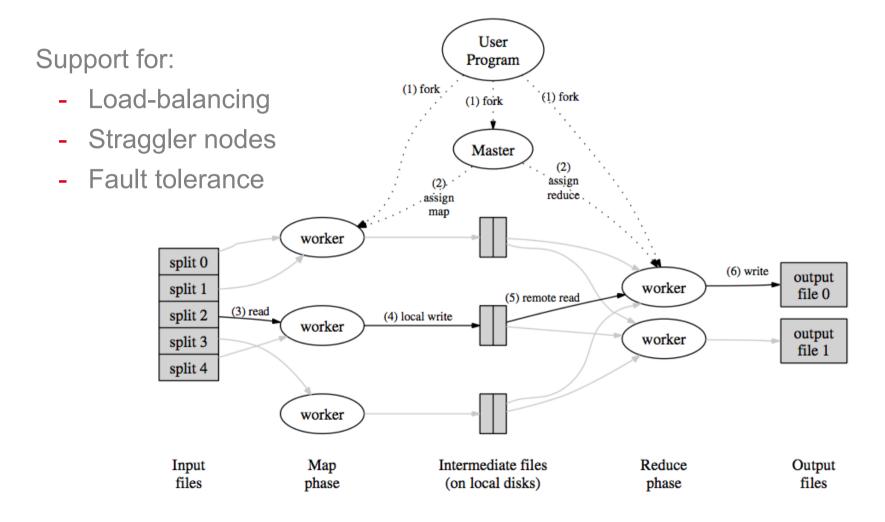
the 2

foo 1

bar 1

file 2

Dynamic Task Scheduling



Original MapReduce

Main open implementation: Hadoop Map/reduce

Limitations:

- Though the map and reduce operation are universal, it is difficult to fit some algorithms (performance-wise and programming-wise)
- Results (included intermediate ones) are written to disk (performance issue)
- Target cloud rather than HPC platforms

In front of these limitations **new frameworks emerged**: Piccolo, Spark, **Flink**, ...

The Flink Case

A recent framework, called Stratosphere before to join the Apache Foundation

Performance improvements:

- Intermediate results are stored in-memory (unless explicitly stated)
- Intermediate results are mutable (in opposition to Spark RDDs)

The Flink Case: Programmability + Performance

More parallel operators

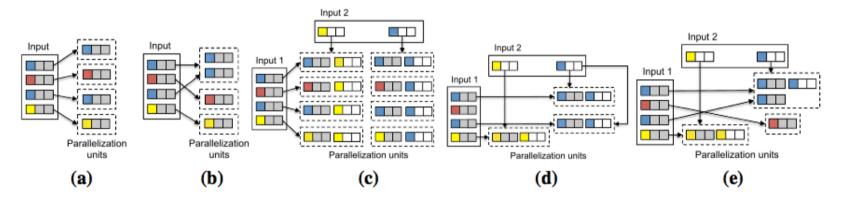


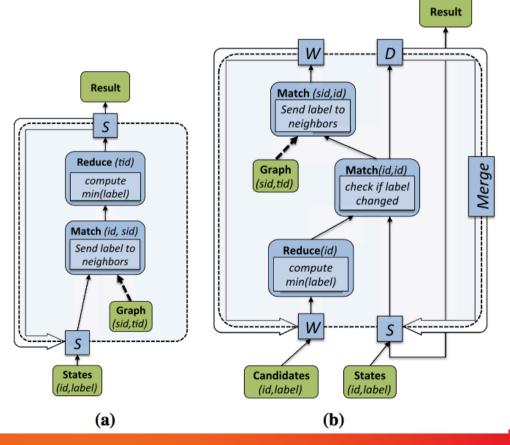
Fig. 5 The five second-order functions (PACTs) currently implemented in Stratosphere. The parallelization units implied by the PACTs are enclosed in *dotted boxes*. a Map b Reduce c Cross d Match e CoGroup

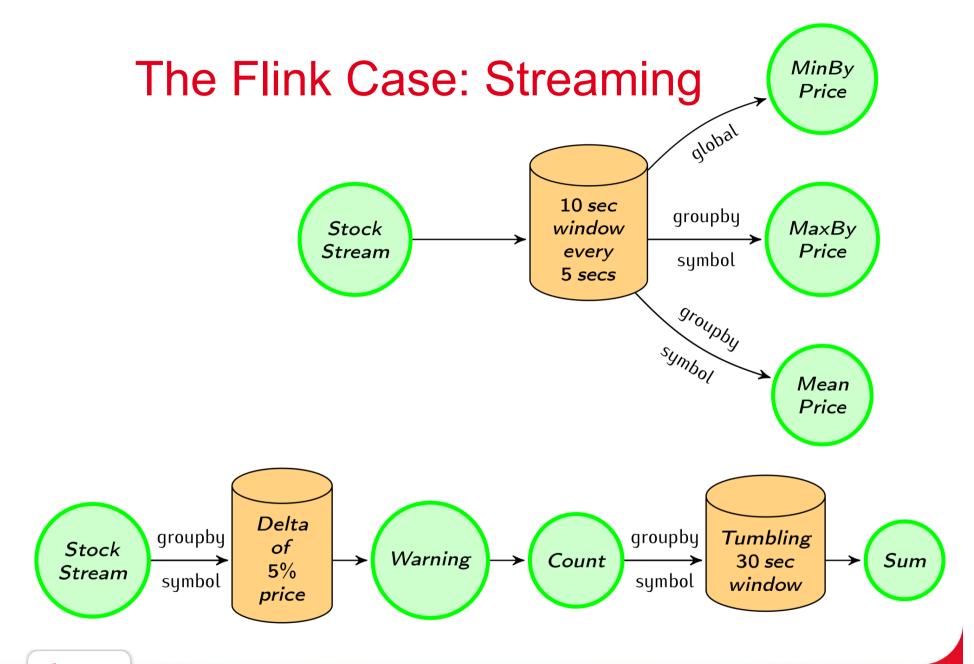
The Flink Case: Programmability + Performance

Programmable data flow graph

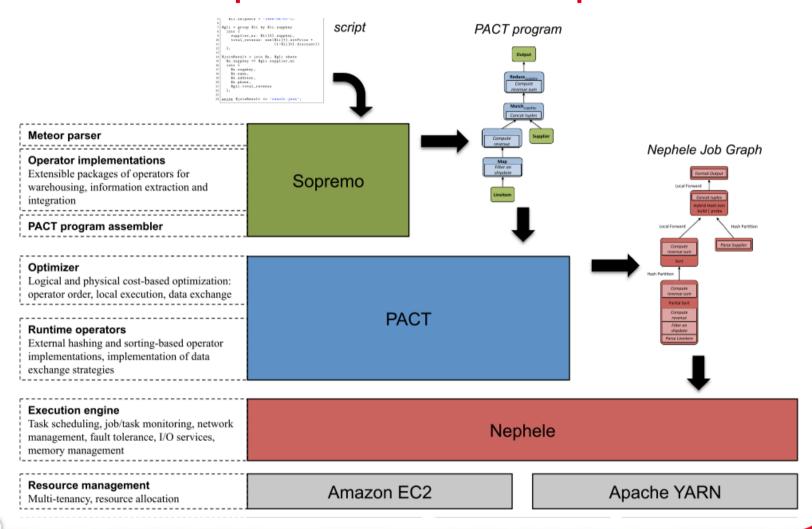
(support iterative algorithms)

Fig. 6 An algorithm that finds the connected components of a graph as a bulk iteration and an incremental Stratosphere iteration. a Bulk iteration b Incremental iteration





The Flink Case: Compile+Run Time Optimizations



The Flink Case: Speciallization Layers

ibraries	CEP Event Processing	Table Relational			FlinkML Machine Learning	Gelly Graph Processing	Table Relational	
APIs & Libraries	DataStream API Stream Processing				DataSet API Batch Processing			
Core	Runtime Distributed Streaming Dataflow							
Deploy	Local Single JVM			Cluster Standalone, YARN			Cloud GCE, EC2	

File System and Databases

A key component of Big Data frameworks

Base concept: relational databases do not scale, go for key/value oriented storage

The Hadoop classics: HDFS (file system), H-base (column-oriented database)

- Write once, read many times
- Manage data replication for fault tolerance

HPC and Big Data

Running Big Data frameworks on HPC architectures

- 1. Adapt existing frameworks:
 - RDMA-based Spark http://hibd.cse.ohio-state.edu/
 - Support for Luster (instead of HDFS)
- 2. Develop new frameworks (MPI based):
 - Picollo
 - MapReduce- MPI

Using Big Data frameworks to analyse HPC data (simulation results, traces,...)

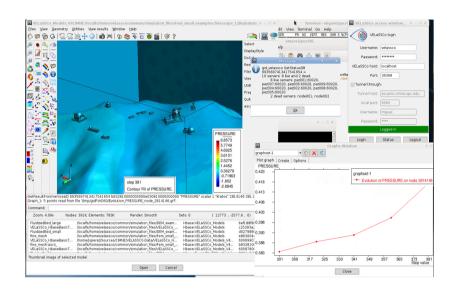
VelaSSco (FP7)

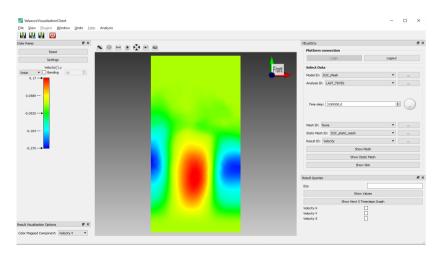
Query based Scientific Visualization:

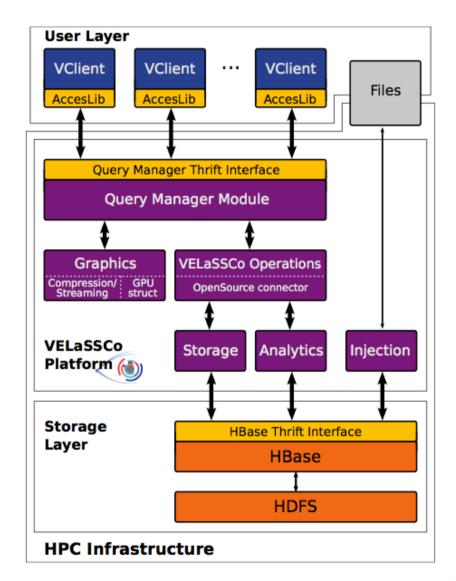
- FEM/DEM simulation data
- Hadoop software suite (MapReduce, HDFS, Hbase, Yarn, Thrift)
- Key/value: (timestep+rank-id, data)
- Scientist request some visualization (isosurface for a given timestep):

Vis client <-> front server <-> map/reduce job <-> HBASE

Velassco Infrastructure

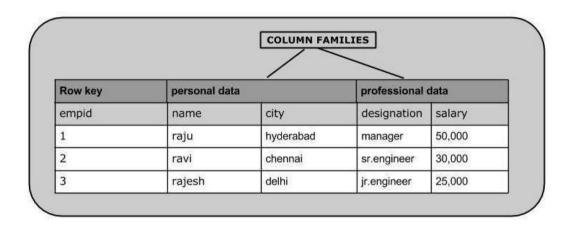






HBase

Column-oriented database



Internally rely on key/value storage: one key per column

Rows are sorted according to key

Data are splits in blocks (10GB first changed to 256MB), triplicated and distributed on the cluster

disks

HBase

Data are splits in blocks (10GB first changed to 256MB), triplicated and distributed on the cluster disks.

At most one mapper per:

too few splits will impair parallelization

Hbase support virtual splits (virtually "split" a split in X parts to enable X mappers to work concurrently) – We tried and experienced issues for X>=8

A mapper can access a split locally or remotely (slower)

HBase issues

- 1. Initial perf. limitation: not enough splits -> not enough parallelism
- 2. Data sharding: be carefull to hot spot

Slow changing bit

Fast changing bit

First key: (model-id, analysis-id, timestep, rank-id)

New key: (model-id,rank-id,analysis-id,timestep)

Rank-id: MPI partition adopted by the numerical simulation that produced the data set.

Queries are often working on a single timestep. *First key* tends to have all data from a timestep in the same split -> low parallelism. *New key* lead to a better spread of different ranks data. But....

HBase Issues

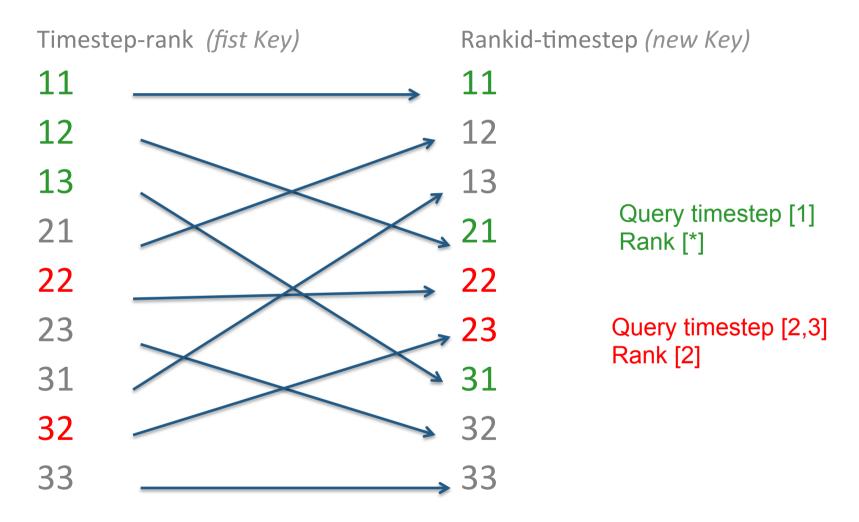
But it depends on the query and data:

DEM (large number of particles): many splits (1000s) so even first key lead to good results

FEM (mesh): smaller number of splits (100s)

Discret-to-Continuous query requires to have a window of time steps, but is only applied to a given number of partitions: *first Key* works better because....

HBase Issues



Contiguous data: more likely to be in same split

Data Injection into HBase

Data inflation: 5x (3x for triplication remaining for metadata from column split?)

Time to inject: 0.5TB -> 2 days

From the simulation to Hbase: use Flume to grab files produced by the simulation (one file per timestep and rank) and inject them into Hbase.

Cluster: A 10 nodes dedicated cluster – 110 TO storage – 10 GB Ethernet network

Permanent Apache installation. Multi-user. Yarn in charge of job scheduling.

ĺnría_

Map/reduce versus Spark versus Flink

From map/reduce to Flink

- Query translation: almost direct (Flink -> tuples, Map/reduce key/values)
- HBASE connector in Flink is immature
- Performance: GetBoundaryofaMesh (mesh surface)
 - Map/reduce 22s, Flink 12s
 - Early tests with Spark: 15s? (no trouble with the HBASE connector)

Summary

- Apache map/reduce: mature but store intermediate results to disks
- Spark /& Flink: in memory storage of intermediate results.
- Flink: promising (known in particular for its streaming capabilities) but for the moment code less mature than Spark.

- HDFS/Hbase: not very satisfied
- Try with Cassendra?? ("everyone knows that HDFS/Hase is portable but slow"?)

Are Big Data tools suited for scientific data?

HPC versus Big Data

HPC

- Numerical simulations
- Thin software stack
- Supercomputer
- C/C++/Fortran/Python
- Looking for the universal programming model
- Small Market

Big Data

- Web and business data
- Thick software stack
- Cloud
- Java/Scala
- Many domain specific languages (DSL)
- Large Market

US National Strategic Computing Initiative (2015)

Sec. 2. Objectives. Executive departments, agencies, and offices (agencies) participating in the NSCI shall pursue five strategic objectives:

- 1. Accelerating delivery of a capable exascale computing system that integrates hardware and software capability to deliver approximately 100 times the performance of current 10 petaflop systems across a range of applications representing government needs.
- 2. Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.

.

